8,146 research outputs found

    Labour market and social policy in Italy. Challenges and changes

    Get PDF
    Eight years after the outbreak of the financial crisis, Italy has still to cope with and overcome a plethora of economic and social challenges. On top of this, it faces an unfavourable demographic structure and severe disparities between its northern and southern regions. Some promising reforms have recently been enacted, specifically targeting poverty and social exclusion. However, much more remains to be done on the way towards greater economic stability and widely shared prosperity

    A fast and robust hand-driven 3D mouse

    Get PDF
    The development of new interaction paradigms requires a natural interaction. This means that people should be able to interact with technology with the same models used to interact with everyday real life, that is through gestures, expressions, voice. Following this idea, in this paper we propose a non intrusive vision based tracking system able to capture hand motion and simple hand gestures. The proposed device allows to use the hand as a "natural" 3D mouse, where the forefinger tip or the palm centre are used to identify a 3D marker and the hand gesture can be used to simulate the mouse buttons. The approach is based on a monoscopic tracking algorithm which is computationally fast and robust against noise and cluttered backgrounds. Two image streams are processed in parallel exploiting multi-core architectures, and their results are combined to obtain a constrained stereoscopic problem. The system has been implemented and thoroughly tested in an experimental environment where the 3D hand mouse has been used to interact with objects in a virtual reality application. We also provide results about the performances of the tracker, which demonstrate precision and robustness of the proposed syste

    Automatic Mode Switching in Atrial Fibrillation

    Get PDF
    Automatic mode switching (AMS) algorithms were designed to prevent tracking of atrial tachyarrhythmias (ATA) or other rapidly occurring signals sensed by atrial channels, thereby reducing the adverse hemodynamic and symptomatic consequences of a rapid ventricular response. The inclusion of an AMS function in most dual chamber pacemaker now provides optimal management of atrial arrhythmias and allows the benefit of atrioventricular synchrony to be extended to a population with existing atrial fibrillation. Appropriate AMS depends on several parameters: a) the programmed parameters; b) the characteristics of the arrhythmia; c) the characteristics of the AMS algorithm. Three qualifying aspects constitute an AMS algorithm: onset, AMS response, and resynchronization. Since AMS programs also provide data on the time of onset and duration of AMS episodes, AMS data may be interpreted as a surrogate marker of ATAs recurrence. Recently, stored electrograms corresponding to episodes of ATAs have been introduced, thus clarifying the accuracy of AMS in detecting ATAs Clinically this information may be used to assess the efficacy of an antiarrhythmic intervention or the risk of thromboembolic events, and it may serve as a valuable research tool for evaluating the natural history and burden of ATAs

    On the duality between p-Modulus and probability measures

    Get PDF
    Motivated by recent developments on calculus in metric measure spaces (X,d,m)(X,\mathsf d,\mathfrak m), we prove a general duality principle between Fuglede's notion of pp-modulus for families of finite Borel measures in (X,d)(X,\mathsf d) and probability measures with barycenter in Lq(X,m)L^q(X,\mathfrak m), with qq dual exponent of p∈(1,∞)p\in (1,\infty). We apply this general duality principle to study null sets for families of parametric and non-parametric curves in XX. In the final part of the paper we provide a new proof, independent of optimal transportation, of the equivalence of notions of weak upper gradient based on pp-Modulus (Koskela-MacManus '98, Shanmugalingam '00) and suitable probability measures in the space of curves (Ambrosio-Gigli-Savare '11)Comment: Minor corrections, typos fixe

    3D Laparoscopy. A potential cutting edge in minimal invasive digestive surgery

    Get PDF
    Laparoscopic surgery has changed surgical landscape, providing reduced surgical trauma, shorter hospital stays, less postoperative pain and better outcomes than open surgery. Since its first development in the 90’s, 3D technology applied to laparoscopic surgery has had several technical improvements and now it represents, together with high definition technology, the best option in minimal invasive digestive surgery, providing shorter operative times and lower blood loss, making easier to perform surgical tasks both for trainees than for skilled surgeons. It remains a little bit more expensive than standard 2D laparoscopic devices but even cheaper than robotic equipment

    Experimental single photon exchange along a space link of 7000 km

    Get PDF
    Extending the single photon transmission distance is a basic requirement for the implementation of quantum communication on a global scale. In this work we report the single photon exchange from a medium Earth orbit satellite (MEO) at more than 7000 km of slanted distance to the ground station at the Matera Laser Ranging Observatory. The single photon transmitter was realized by exploiting the corner cube retro-reflectors mounted on the LAGEOS-2 satellite. Long duration of data collection is possible with such altitude, up to 43 minutes in a single passage. The mean number of photons per pulse ({\mu}sat) has been limited to 1 for 200 seconds, resulting in an average detection rate of 3.0 cps and a signal to noise ratio of 1.5. The feasibility of single photon exchange from MEO satellites paves the way to tests of Quantum Mechanics in moving frames and to global Quantum Information.Comment: 5 pages, updated versio

    Experimental Satellite Quantum Communications

    Get PDF
    Quantum Communications on planetary scale require complementary channels including ground and satellite links. The former have progressed up to commercial stage using fiber-cables, while for satellite links, the absence of terminals in orbit has impaired theirs development. However, the demonstration of the feasibility of such links is crucial for designing space payloads and to eventually enable the realization of protocols such as quantum-key-distribution (QKD) and quantum teleportation along satellite-to-ground or intersatellite links. We demonstrated the faithful transmission of qubits from space to ground by exploiting satellite corner cube retroreflectors acting as transmitter in orbit, obtaining a low error rate suitable for QKD. We also propose a two-way QKD protocol exploiting modulated retroreflectors that necessitates a minimal payload on satellite, thus facilitating the expansion of Space Quantum Communications

    An aerothermodynamic design optimization framework for hypersonic vehicles

    Get PDF
    In the aviation field great interest is growing in passengers transportation at hypersonic speed. This requires, however, careful study of the enabling technologies necessary for the optimal design of hypersonic vehicles. In this framework, the present work reports on a highly integrated design environment that has been developed in order to provide an optimization loop for vehicle aerothermodynamic design. It includes modules for geometrical parametrization, automated data transfer between tools, automated execution of computational analysis codes, and design optimization methods. This optimization environment is exploited for the aerodynamic design of an unmanned hypersonic cruiser flying at M∞=8 and 30 km altitude. The original contribution of this work is mainly found in the capability of the developed optimization environment of working simultaneously on shape and topology of the aircraft. The results reported and discussed highlight interesting design capabilities, and promise extension to more challenging and realistic integrated aerothermodynamic design problems
    • 

    corecore